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Abstract

Objective: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease

affecting motor neurons, with broad heterogeneity in disease progression and

survival in different patients. Therefore, an accurate prediction model will be

crucial to implement timely interventions and prolong patient survival time.

Methods: A total of 1260 ALS patients from the PRO-ACT database were

included in the analysis. Their demographics, clinical variables, and death

reports were included. We constructed an ALS dynamic Cox model through

the landmarking approach. The predictive performance of the model at differ-

ent landmark time points was evaluated by calculating the area under the curve

(AUC) and Brier score. Results: Three baseline covariates and seven time-

dependent covariates were selected to construct the ALS dynamic Cox model.

For better prognostic analysis, this model identified dynamic effects of treat-

ment, albumin, creatinine, calcium, hematocrit, and hemoglobin. Its prediction

performance (at all landmark time points, AUC≥ 0.70 and Brier score≤ 0.12)

was better than that of the traditional Cox model, and it predicted the dynamic

6-month survival probability according to the longitudinal information of indi-

vidual patients. Interpretation: We developed an ALS dynamic Cox model with

ALS longitudinal clinical trial datasets as the inputs. This model can not only

capture the dynamic prognostic effect of both baseline and longitudinal covari-

ates but also make individual survival predictions in real time, which are valu-

able for improving the prognosis of ALS patients and providing a reference for

clinicians to make clinical decisions.

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-

erative disease associated with the loss of brain and spinal

cord motor neurons, causing paralysis of voluntary mus-

cles, which may lead to problems in action, speech, and

breathing.1 Paralysis of muscles, respiratory failure, and

loss of vital functions are common causes of death. Once

ALS symptoms onset, the patient’s quality of life will be

greatly reduced, and along with the increasing mortality

risk, this will also bring a tremendous burden to the

social health care system.2

Precision medicine3 is committed to improving all

aspects of population health care. One aspect of precision

medicine is to build a predictive model with good

performance that can provide accurate survival prediction

and effective prognostic analysis. ALS has a widely hetero-

geneous clinical presentation, disease progression, and

ultimately survival. The typical time from symptom onset

to death is 2–3 years,4 but 5%–20% of patients may pro-

gress very slowly and even survive for decades.5 Conse-

quently, both the prediction of survival at the individual

level and the identification of biomarkers for prognostic

analysis are challenging.6

Although existing medicines are approved for ALS

treatment,7,8 there remains a significant unmet need to

prevent muscle function decline and prolong patient sur-

vival.9 After the diagnosis of ALS, patients may experience

symptom attacks at any time; thus, long-term follow-up

is needed to monitor their condition. At each follow-up
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visit, the prediction of the patient’s future survival proba-

bility (or mortality risk) and the dynamic prognostic

changes in biomarkers can provide some reference for cli-

nicians to make clinical decisions, such as controlling the

medication dosages. Clinicians also need tools to predict

the timing of interventions. Accurate predictive models

will be critical in improving the efficiency of therapeutics

and prolonging patient survival.

During the long-term follow-up of ALS patients, demo-

graphic information is collected, as are various laboratory

indicators, vital signs, and respiratory capacity at each

follow-up. Therefore, most ALS datasets include both

baseline (static) and time-dependent covariates.10 For

example, the patient’s age at diagnosis, sex, and treatment

are recorded upon entry into the study and are among

the baseline covariates. At the same time, albumin, creati-

nine and calcium in the blood are measured at multiple

follow-ups. The values of these covariates may change

with the patient’s condition, making them longitudinal

time-dependent covariates.

Most studies on ALS have focused on the disease

progression and survival of patients,11,12 and most have

used traditional Cox proportional hazards (PH) models

to evaluate specific prognostic indicators.12–16 These

models are usually constructed based on only the base-

line covariates and use a constant hazard ratio (HR)

value (at baseline) to assess the differences between

groups. As shown in Fig. 1A, these models often make

predictions at baseline (s0= 0), which are referred to as

the static (baseline) prediction model. However, during

the actual follow-up process, especially long-term

follow-up, the effects of both time-dependent covariates

and baseline covariates may change over time, which

are called dynamic prognostic effects, so the HR is a

value that may not stay constant. Existing static predic-

tion models may have limited ability to deal with these

covariates. On the one hand, the application of the Cox

model must satisfy the PH assumption; on the other

hand, the static prediction model fails to fully utilize

longitudinal information to predict disease progression

and survival in real time.

Therefore, we wanted to introduce a dynamic predic-

tion model for patients with ALS. As shown in Fig. 1B,

the landmarking approach is a common dynamic predic-

tion method17–19 that considers patients still at risk at dif-

ferent landmark time points sl and the longitudinal

information collected up to the prediction time (both

baseline and later time points). The Cox model combined

with the landmarking approach18 can capture the

dynamic prognostic effect of both baseline covariates and

time-dependent covariates but also make full use of the

longitudinal information of ALS patients to dynamically

predict their survival probability.

Here, we aimed to construct an ALS dynamic survival

prediction model by inputting clinical trial data from the

Pooled Resource Open-Access ALS Clinical Trials (PRO-

ACT) database into a dynamic Cox regression with a

landmarking approach. The prognostic analysis of this

model can track the dynamically changing effects of dif-

ferent covariates in clinical follow-up; this model can

make predictions of the future survival probability of ALS

patients at the time point of interest. Thus, this predic-

tion model can provide a reference for clinicians to make

clinical decisions.

Methods

Data source

Data used in this study were obtained from the PRO-

ACT repository.1,20 The PRO-ACT dataset includes more

than 10,000 clinical patient records involved in 23 phase

II/III clinical trials. The latest version of the PRO-ACT

database (1st August 2022) was used in this work.

The data cleaning process was performed as described

in Appendix S1 and Fig. S2.

Statistical methods

Landmarking approach

The basic idea of the landmarking approach is to choose

a series of meaningful time points in advance and evalu-

ate the status of each patient at each time. Using the

landmarking approach to construct a dynamic prediction

model, we should first determine the maximum predic-

tion time of interest smax, which is usually based on the

maximum follow-up time in the data. As mentioned in

the Introduction, the follow-up time of ALS patients from

onset to death is generally 2–3 years.4 The maximum sur-

vival time in our dataset was 37.7 months (more than 3

years) after data cleaning. Therefore, we defined smax as

18 months, which was the intermediate time point of the

maximum follow-up interval, and the expected prediction

interval was [0, 18]. In addition, 18 months is the longest

recorded stable period for ALS patients.21 Thus, the

follow-up information of all the patients during the previ-

ous 18 months could be included in the analysis, with

fewer than 20% of the patients having their follow-up

information after 18 months ignored. We selected a pre-

diction window w of 6 months to predict patient survival

in the next half-year. During the period from baseline

(s0 = 0) to 18 months (sL= smax = 18), we selected 19

landmark time points (one per month) for equally spaced

follow-up times. At each landmark time point sl (l= 0,

1, . . ., 18), we selected the patients still at risk (alive and
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being followed up) to constitute the corresponding land-

mark dataset Rl (l= 0, 1, . . ., 18), as shown in Fig. 1B.

Ignoring the events that occurred after sl+ w months,

which meant those during each period [sl, sl +w], the sur-

vival status was recorded as censored if the patient was

still alive.

Dynamic Cox prediction model

Through the above landmarking approach, a “super pre-

diction dataset” R was formed by stacking all 19 land-

mark datasets Rl together. The dynamic Cox model was

constructed in R by adding the normalization of land-

mark time points tLM ¼ sl= sL�s0ð Þ as the function

θ slð Þ ¼ θ1tLM þ θ2t2LM . We included βk slð Þ ¼ βk,0þ
βk,1tLM þ βk,2t

2
LM as a time-varying effect function for the

kth covariate Zk at prediction time sl, where k ∈ {1,

2, . . ., K}, K being the total number of covariates; and

βk,0, βk,1, βk,2 represent the parameters of the constant, lin-

ear and quadratic terms, respectively. The following

model estimates the dynamic risk rate at any time point t

from sl to sl+ w:

h t,Zjslð Þ ¼ h0 tð Þ � exp θ slð Þ½ � � exp ∑
K

k¼1

ZT
k slð Þ � βk slð Þ

� �
,

sl ≤ t ≤ sl þ w

Model evaluation

We also constructed a static Cox model based on the

baseline data, which only made predictions at baseline,

while the dynamic Cox model could predict at each land-

mark time point sl. To show the difference in predictive

ability between the model that only used baseline data

and the dynamic prediction model that used both base-

line and longitudinal data, we constructed a conditional

Cox model22 based on baseline data at each landmark

time point, whose predictive performance we compared

with that of the dynamic Cox model.

We performed a Monte Carlo cross-validation simula-

tion in the model evaluation. The data were randomly

divided into a training set (70% of the sample) and a test

set (30% of the sample) for cross-validation to avoid

overfitting. The area under the curve (AUC) is typically

used for discrimination.23 If the AUC is higher, the con-

sistency is better, which means that the predicted survival

probability is more consistent with the patient’s actual

survival time. The Brier score is a measure of calibration,

and it equals the squared difference between the probabil-

ity predicted by a model and the observed result.24 The

smaller the Brier score is, the higher the accuracy of the

model prediction. The average AUC and Brier score

values were calculated at each landmark time point.

Figure 1. Static prediction and dynamic prediction.
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Results

Description of predictors

In the end, 1260 patients were included in the analysis,

with a censoring rate of 29.76%. Their survival time

ranged from 0.13 to 37.73 months. As shown in Table 1,

we performed a data description of 37 covariates at

baseline, which included 4 baseline covariates and 33

time-dependent covariates. For example, the mean value

of the continuous variable age was 57.84 years, with a

standard deviation of 10.24, and the binary variable

treatment had 875 patients in the active group and the

rest in the placebo group. To avoid the small effect of

each additional unit value of continuous variables, we

preprocessed some covariates, such as dividing the age

variable by 10, so the one-unit effect could be

explained by the risk increase in patients every 10 years.

We used the baseline data to construct a univariate

Cox model and found that 17 covariates, such as age,

treatment and albumin, all had a significant effect on

the survival outcome (p< 0.05). The PH assumption

Table 1. The results of the descriptive analysis of baseline data.

Variables (unit) (reference item) Mean� SD (N= 1260)

Univariate analysis

Coef SE (coef) p value PH test

Age (10 year) 5.78� 1.02 0.315 0.036 <0.001 0.493

Sex= Female (ref: male) 510 0.064 0.068 0.351 0.940

Race=Caucasian (ref: other) 1214 0.283 0.199 0.156 0.460

Treatment =Active (ref: placebo) 875 −0.224 0.072 0.002 <0.001
Used riluzole= Yes (ref: no) 812 0.133 0.071 0.060 0.457

Albumin (10 g/L) 4.44� 0.30 −0.648 0.111 <0.001 0.600

ALT/SGPT > 40 (ref: 0–40 U/L) 365 −0.063 0.075 0.401 0.898

AST/SGOT > 40 (ref: 0–40 U/L) 200 0.034 0.092 0.715 0.104

Bicarbonate (10mmol/L) 2.63� 0.32 1.114 0.111 <0.001 0.499

Bilirubin total (μmol/L) 10.14� 4.95 0.021 0.006 <0.001 0.223

BUN (mmol/L) 5.71� 1.87 0.044 0.020 0.026 0.040

Calcium (mmol/L) 2.36� 0.16 −0.636 0.165 <0.001 <0.001
Chloride (mmol/L) 10.24� 0.29 −0.032 0.122 0.793 0.047

Creatinine (10 μmol/L) 6.59� 1.76 −0.060 0.020 0.003 0.001

Glucose >5.5 (ref: ≤5.5mmol/L) 475 0.215 0.069 0.002 0.441

Hematocrit (10%) 4.34� 0.38 −0.205 0.090 0.023 0.293

Hemoglobin (10 g/L) 14.39� 1.30 0.002 0.027 0.935 0.565

Potassium (mmol/L) 4.18� 0.33 −0.040 0.107 0.705 0.067

Sodium (10mmol/L) 13.92� 0.24 −0.297 0.146 0.041 0.137

RBC (10E9/L) 4.72� 0.46 −0.232 0.076 0.002 0.349

WBC (10E9/L) 6.83� 1.87 0.020 0.018 0.251 0.216

BPD (10mmHg) 8.06� 1.05 0.085 0.033 0.011 0.761

BPS (10mmHg) 13.16� 1.72 0.069 0.019 <0.001 0.049

Pulse (10 beats/min) 7.69� 1.18 0.078 0.028 0.005 0.302

Resp rate (breaths/min) 17.45� 3.16 0.035 0.011 0.002 0.089

Q1_Speech (score) 2.76� 1.26 0.004 0.027 0.873 0.323

Q2_Salivation (score) 3.08� 1.15 0.024 0.030 0.410 0.948

Q3_Swallowing (score) 3.10� 1.06 0.027 0.031 0.382 0.742

Q4_Handwriting (score) 2.40� 1.39 0.005 0.025 0.844 0.408

Q5_Cutting (score) 2.06� 1.41 0.009 0.024 0.702 0.350

Q6_Dressing_and_Hygiene (score) 1.92� 1.27 0.018 0.027 0.513 0.316

Q7_Turning_in_Bed (score) 2.41� 1.28 0.002 0.027 0.933 0.132

Q8_Walking (score) 2.26� 1.12 −0.012 0.031 0.698 0.288

Q9_Climbing_Stairs (score) 1.40� 1.41 0.020 0.024 0.417 0.212

Q10_Respiratory (score) 3.47� 0.76 0.111 0.046 0.016 0.888

ALSFRS total (10 score) 2.49� 0.73 0.041 0.047 0.377 0.330

Forced vital capacity 1 (L) 2.57� 1.10 0.031 0.032 0.327 0.943

Global PH test <0.001

BPD, blood pressure diastolic; BPS, blood pressure systolic; BUN, blood urea nitrogen; PH, proportional hazards; RBC, red blood cells; Resp rate,

respiratory rate; WBC, white blood cell.
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test showed that six covariates did not meet the PH

assumption at baseline, and the global model

outcome was the same (p< 0.05). The time-dependent

covariates were collected from repeated multiple mea-

surements, whose values usually change over time and

which may not satisfy the PH assumption at later time

points.

Predictor selection

The cleaned dataset retained 37 covariates, only some

of which would necessarily be clinically or statistically

significant in the model in actual clinical practice.

Therefore, we needed to filter the covariates to ensure

the predictive performance of the final model by select-

ing as few but statistically significant covariates as

possible.

Due to the linear relationship between ALSFRS Total

and Q1–Q10, we removed ALSFRS Total first, with the

remaining 36 covariates as Dataset 1. After that, we used

ALSFRS Total to replace Q1–Q10, with the remaining 27

covariates becoming Dataset 2. Based on Dataset 1 and

Dataset 2, we added their covariates and the interaction

terms with time to construct the respective dynamic Cox

models.

ALS dynamic prognostic and prediction
model

We added the covariates in Dataset 1 and their interac-

tion terms with time to the initial dynamic Cox model

for stepwise backward regression (satisfying p< 0.05) and

finally selected 19 covariates as Dataset 3. The prognostic

results of the dynamic Cox models based on Dataset 3

are listed in Table S1, and the dynamic HRs of covariates

are shown in Fig. S1. Based on these results, we finally

selected 10 covariates with obvious time-varying effects

and clinical significance as Dataset 4: treatment, albumin,

calcium, creatinine, hematocrit, hemoglobin, age, sex,

bicarbonate and glucose. Thus, based on Dataset 4, we

constructed one static Cox model and one ALS dynamic

Cox model (final model).

Dynamic prognostic analysis

The results of the static Cox model and the ALS dynamic

Cox model based on Dataset 4 are presented in Table 2,

and the dynamic HRs of the covariates in the final model

are shown in Fig. 2.

In the static Cox model, being in the active treatment

group was a protective factor, and the risk was 0.774

Table 2. Static Cox model and ALS dynamic Cox model based on Dataset 4.

Variables (unit)

Static Cox model ALS dynamic Cox model

Coef SE (Coef) p value Coef SE (Coef) p value

Age (10 year) β1 0.309 0.039 <0.001 β1,0 0.243 0.017 <0.001
Sex= Female β2 −0.058 0.091 0.523 β2,0 −0.210 0.037 0.016

Trea=Active β3 −0.256 0.073 <0.001 β3,0 −1.407 0.109 <0.001
β3,1 4.254 0.466 <0.001
β3,2 −3.144 0.445 <0.001

Albu (10 g/L) β4 −0.263 0.122 0.031 β4,0 −1.272 0.127 <0.001
β4,1 0.882 0.217 0.030

Bica (10mmol/L) β5 0.906 0.113 <0.001 β5,0 1.014 0.040 <0.001
Calc (mmol/L) β6 −0.409 0.221 0.064 β6,0 2.645 0.318 <0.001

β6,1 −4.291 0.561 <0.001
Crea (10 μmol/L) β7 −0.101 0.023 <0.001 β7,0 −0.294 0.021 <0.001

β7,1 0.214 0.036 0.004

Gluc >5.5 β8 0.137 0.069 0.048 β8,0 0.235 0.029 <0.001
Hema (10%) β9 −1.067 0.252 <0.001 β9,0 0.099 0.244 0.832

β9,1 −3.047 0.413 <0.001
Hemo (10 g/L) β10 0.388 0.078 <0.001 β10,0 0.219 0.076 0.123

β10,1 0.579 0.127 0.014

tLM θ1 6.441 1.461 0.022

(tLM)
2 θ2 2.285 0.444 <0.001

Albu, albumin; Bica, bicarbonate; Calc, calcium; Crea, creatinine; Gluc, glucose >5.5 mmol/L (ref: ≤5.5 mmol/L); Hema, hematocrit; Hemo, hemo-

globin; Sex= Female (ref: male); Trea, treatment =Active (ref: placebo); tLM ¼ sl= sL�s0ð Þ is the normalization of landmark time points;

θ slð Þ ¼ θ1tLM þ θ2t2LM is the time function; βk slð Þ ¼ βk,0 þ βk,1tLM þ βk,2t
2
LM is the time-varying effect function for the kth covariates Zk. The k in

{1, 2, . . ., K}, K is the total number of covariates; the βk,0, βk,1, βk,2 separately represents the parameters of the constant, linear, and quadratic terms.
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times that in the placebo group (HR= exp (−0.256)=
0.774). Albumin (HR= 0.769 per 10 g/L increase) and

creatinine (HR= 0.904 for every 10 mmol/L increase)

were also protective factors that reduced the mortality

risk in disease progression. Hematocrit was a protective

factor (HR= 0.344 per 10% increase), whereas hemoglo-

bin was a danger factor (HR= 1.474 per 10 g/L

increase). Although calcium was a protective factor with-

out statistical significance in static Cox models (p=
0.064), it does not satisfy the PH assumption, so the

results obtained by traditional Cox model analysis may

be unreliable.

As shown in Fig. 2A, the HR of treatment (= active

group) was 0.245 at baseline, and the effect gradually

decreased with the change in follow-up time in the final

model. After the seventh month of follow-up, the 95%

confidence interval of the HR value included 1. In

Fig. 2B–D, both albumin and creatinine were indeed pro-

tective factors at baseline, but both with time-varying

effects decreased as prediction time increased, with the

95% confidence interval of dynamic HR approaching 1 at

follow-up around Month 18. Neither hematocrit nor

hemoglobin was statistically significant at the beginning

of follow-up (Fig. 2E,F). As the prediction time changed,

hematocrit gradually became a strong protective factor

(HR= 0.052); in the meantime, hemoglobin became a

danger factor, conferring a risk of 2.221 per 10 g/L

increase. The higher the calcium value at the beginning of

follow-up, the higher the mortality risk (Fig. 2C), making

it a danger factor. However, as the prediction time chan-

ged (follow-up progress), the dynamic HR value of cal-

cium gradually decreased, the 95% confidence interval

included 1 at 9 months of follow-up, and it became a

protective factor after nearly 16 months of follow-up.

Finally, the remaining covariates age, bicarbonate, and

glucose (>5.5 mmol/L) have all been confirmed as danger

factors25–27 that shorten patient survival time. For exam-

ple, bicarbonate had HR= 2.474 in the static Cox model,

and in the final model, there was 2.757 times the risk for

every 10 mmol/L bicarbonate increase. In addition, sex

(= female), although not statistically significant in the

static Cox model, was found to be a protective factor in

the final model (HR= 0.811), which is also in line with

previous findings.28

Figure 2. Time-varying effect for covariates.
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Predictive performance assessment

We performed internal validation by Monte Carlo cross-

validation, separately examining the predictive perfor-

mance of both the static Cox model and the dynamic

Cox models built based on the four datasets. As shown in

Fig. 3, the time-dependent AUC and Brier score of the

dynamic Cox model outperformed those of the static Cox

model and the conditional Cox model at baseline. At the

subsequent landmark time points, the dynamic Cox

model also outperformed the conditional Cox model. The

static Cox model could only make predictions at baseline,

while the dynamic Cox model could make predictions at

different prediction time points; thus, the two models

could not be directly compared. Figure 3 also shows that

from Dataset 1 to Dataset 4, although the model con-

struction became more streamlined, the overall time-

dependent AUC was greater than 0.70, and the Brier score

stayed below 0.12. The predictive performance was not

reduced by the reduction in covariates, and the perfor-

mance was relatively stable.

Individual survival prediction

The main purpose of constructing a dynamic prediction

model was to provide dynamic and real-time survival pre-

dictions for ALS patients, which would be valuable in

clinical decision-making because the outcome determines

who should receive early treatment and when it should be

applied. The ALS dynamic Cox model (final model) was

as follows:

bh tjZ, slð Þ ¼ bh0 tð Þ � exp 6:441 � tLM þ 2:285 � t2LM
� �

� exp Age slð Þ � 0:243þ Sex slð Þ � �0:210ð Þ
h

þ Bica slð Þ � 1:014þ Gluc slð Þ � 0:235
þ Trea slð Þ � �1:407þ 4:254 � tLM�3:144 � t2LM

� �
þ Albu slð Þ � �1:272þ 0:882 � tLMð Þ
þ Calc slð Þ � 2:645�4:291 � tLMð Þ
þ Crea slð Þ � �0:294þ 0:214 � tLMð Þ
þHema slð Þ � 0:099�3:047 � tLMð Þ
þHemo slð Þ � 0:219þ 0:579 � tLMð Þ

i
,

sl < t < sl þ w

where bh0 tð Þ is the baseline hazard rate estimated by the

dynamic Cox model, tLM ¼ sl= sL�s0ð Þ are the normalized

landmark time points; items such as Age(sl) are the values

of the covariates at the landmark time point sl; andbh tjZi, slð Þ could be calculated by inputting the covariate

value of patient i at the landmark time point sl. Through

the following formula, the conditional survival probability

of patient i (i ∈ {1, 2, . . ., n}, where n is the sample size)

at landmark time point sl can be obtained:

bSi sl þ 6jsl,Zið Þ ¼ exp �
Z slþ6

sl

bh tjZi, slð Þdt
� �

We selected two patients with different degrees of dis-

ease progression who had the specific covariate informa-

tion given in Table S2. As shown in Table S2 and Fig. 4A,

patient 1 was a man in the placebo group with poor

Figure 3. The results of model evaluation.
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performance in the remaining covariates at baseline, and

the ALS dynamic Cox model predicted that his 6-month

survival probability was approximately 0.80. As the

follow-up progressed, albumin, creatinine, and hematocrit

were increased, bicarbonate was the danger factor, and

glucose and hemoglobin were decreased. Under the com-

bined effect of these covariates, the 6-month survival

probability remained higher than 0.90. Conversely,

although patient 2 (Fig. 4B) was a female in the active

group and the other covariates performed well at baseline,

the predicted 6-month survival probability was higher

than that of patient 1 at baseline (approximately 0.98).

However, during the follow-up from 4 to 8 months, the

patients’ condition changed; the protective factors albu-

min, creatinine, and hematocrit decreased; and the danger

factors bicarbonate, calcium, and hemoglobin increased,

so the 6-month survival probability of patient 2 decreased

to 0.28. As the follow-up went on, the corresponding cov-

ariates improved after 12 months, so the 6-month survival

probability increased.

At the same time, we calculated the survival probability

predicted by the static Cox model. The static Cox model

could only use the baseline covariates to predict the sur-

vival probability at baseline, which was continuously

decreasing and could not reflect the real condition

changes of patients in real time.

Discussion

Dynamic prediction is a method that uses updated

follow-up information to accurately predict the survival/

risk of patients with a certain disease.29 With the develop-

ment of precision medicine, the diagnosis and treatment

of ALS diseases need to enter the era of individualized

medicine,2,6 and clinicians also need tools to predict the

timing of treatment interventions, so prediction models

will be crucial to improve the effectiveness of treatment.30

The purpose of this paper was to construct an ALS

dynamic Cox prognosis and prediction model based on

longitudinal ALS clinical trial data from the PRO-ACT

database.

The ALS dynamic Cox prognostic model accounts for

the time-varying effects of the longitudinal time-

dependent covariates. First, we found that the effect of

treatment gradually decreased with follow-up time, and

the dynamic HR was not statistically significant after 7

months of follow-up. Just as the patients’ long-term drug

administration process may lead to the emergence of drug

resistance, the efficacy of the treatment decreases with

time.31 Second, ALS patients generally have lower levels

of creatinine than healthy people32; 5% albumin for plas-

mapheresis has an acceptable safety profile in ALS

patients.33 Therefore, elevated creatinine and albumin are

protective factors that reduce the risk of death and

improve the survival probability as the disease pro-

gresses.1,34 Our model found that creatinine and albumin

were indeed protective factors at baseline. It was also

found that the effects of creatinine and albumin gradually

decreased as the follow-up progressed.

In addition, the results of dynamic prognostic analysis

revealed some new findings. Calcium dysregulation in the

blood plays a central role in the pathophysiology of

Figure 4. Dynamic individual survival predictions.
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ALS.35 Our final model found that calcium was a danger

factor at baseline, but in the late follow-up (16 months

later), calcium gradually became a protective factor. Both

hemoglobin and hematocrit were found to be danger fac-

tors at baseline, consistent with earlier findings,27,36 but

without statistical significance in our model. As the pre-

diction time increased, hemoglobin became a strong dan-

ger factor, and hematocrit transformed into a protective

factor. In the existing clinical studies, the conclusions

about the impact of calcium, hematocrit, and hemoglobin

on the long-term survival of ALS patients are not com-

prehensive, so the roles of these three variables in the

pathophysiology of ALS deserve further research. We

hope that the results of dynamic prognostic analysis will

provide a reference for clinical researchers when studying

the long-term survival of ALS patients.

The ALS dynamic Cox prediction model we con-

structed can estimate the patients’ conditional survival

probability at different prediction time points, which can

provide some reference for clinicians to make clinical

decisions. Taking patient 1 as an example, at sl= 6, the

predicted 6-month survival probability is over 0.90, which

indicates that the patient can live for at least 6 months.

The patient’s survival probability stayed high during the

middle and late follow-up, also indicating that the plan of

therapy made by the clinicians was appropriate and pro-

longed the patient’s survival time. Clinicians can decide

to stay on the current course or even reduce the dosage

of a drug. In contrast, for patient 2, the survival probabil-

ity declined to approximately 0.28 during the 4- to 8-

month follow-up period. During this 4-month span,

when a decreasing survival probability was predicted, cli-

nicians needed to identify the cause of the patient’s con-

dition changes in a timely manner and make decisions to

intervene. Therefore, the survival probability could be

used as an alternative indicator to predict changes in

patients’ conditions in advance. Within the continued

follow-up of patient 2, the predicted 6-month survival

probability increased after 12 months. At this time, it is

possible that the plan of therapy was modified by the cli-

nicians, perhaps to a more suitable plan for the patient,

thereby improving the patient’s condition.

Many studies based on ALS datasets also take ALS dis-

ease progression (functional impairment) as the outcome

variable of interest, and most of the models constructed

are generalized linear models or machine learning

models.6,37–39 However, there are many kinds of scoring

systems for disease progression in ALS,40–42 and the dis-

ease progression results of ALS patients may not be all

the same, leading to different prognostic results. More-

over, dynamic prognostic outcomes also play an impor-

tant role in clinical trials. Taking the time-to-event

variable as the outcome is a more intuitive approach, and

the predicted survival probability can directly reflect the

progress of the patient’s condition. In addition, in studies

with time-to-event as the outcome variable, traditional

Cox PH models are often only used in univariate analysis

or constructed multivariable prognostic models,12–16

which lack survival prediction ability at the individual

level and do not take into account the dynamic effects of

covariates. The ALS dynamic Cox model constructed in

this paper cannot only identify dynamic effects in longitu-

dinal covariates for prognostic analysis but also dynami-

cally predict patients’ future survival probability at the

individual level.

When we apply the landmarking approach, some

parameter settings are necessary. First, the prediction win-

dow w depends on the disease duration and the time

interval of patient condition change.4 Therefore, predict-

ing the survival of patients in the next 6 months can pro-

vide timely feedback on the condition of ALS patients.

Second, the selection of the landmark time point sl is

independent of the actual survival time, which implies the

weighting of the prediction time. The simplest method is

to use an equidistant interval of points on the prediction

interval [0, smax], and the number of time points between

20 and 100 is appropriate.43 In addition, the median

follow-up time is usually selected as the maximum pre-

diction time of interest smax. For example, in this article,

18 months is the intermediate of the maximum follow-up

time (37.7 months) and is also the longest recorded stable

period for ALS patients.21 The combination selection of

prediction window w and landmark time points sl can be

obtained by cross-validation.44 Finally, for the functional

form of time-varying effects βk(s) and the baseline hazard

changing θ(s), the most commonly used is quadratic

functions.45 Certainly, other functions could also be cho-

sen to describe the change in time, such as the cubic

function and spline function.

This study has some limitations. First, due to the high

missing rate of raw data in PRO-ACT, some covariates

were not included in the cleaned dataset, but they have

been confirmed to affect ALS patients, such as the uric

acid and creatine kinase concentrations.1,46 Second, the

PRO-ACT database includes data from clinical trials of

ALS patients over the past 20 years, although the ALS

patients in the PRO-ACT database are not necessarily

representative of the entire ALS patient population,47 it is

the largest publicly available dataset incorporating ALS

clinical trials.1 Although there are no genetics, cognitive

status, or deep phenotype data in the PRO-ACT database,

the clinical biomarkers of patients directly reflect the

changes in patients’ disease conditions. Moreover, the

ALSFRS total score and its associated problem variables

(Q1–Q10) were not statistically significant in the stepwise

backward regression (except for Q8 and Q9, which were
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statistically significant in the dynamic prediction model

based on Dataset 3 but with small coefficients) and were

not included in the final model. However, some studies

have shown that, though functional decline based on the

ALSFRS total score is closely related to survival, it does

not perform better as a predictor.26 Finally, although the

model performed well in the internal cross-validation of

Monte Carlo simulations, it should also be externally vali-

dated on datasets from other ALS centers to expand its

application to more ALS patients. Although we demon-

strated that the dynamic Cox model is a powerful tool,

there is room for further improvement of the proposed

dynamic prediction model as a reference for clinicians

and patients.

Conclusions

In conclusion, this paper developed the first ALS dynamic

survival prediction model based on the landmark

approach in Cox regression by using ALS longitudinal

clinical trial data from the PRO-ACT database. In addi-

tion to including baseline covariates, this model can also

include longitudinal time-dependent covariates for analy-

sis, which can identify the dynamic prognostic effect of

these covariates and make individual survival predictions

at any time point of interest for ALS patients with differ-

ent conditions. The prognostic analysis and predictive

results of this model will be valuable for improving the

survival time of ALS patients and can provide a reference

for clinicians to make clinical decisions about ALS disease

treatment.
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41. Chiò A, Hammond ER, Mora G, Bonito V, Filippini G.

Development and evaluation of a clinical staging system

for amyotrophic lateral sclerosis. J Neurol Neurosurg

Psychiatry. 2015;86(1):38-44. doi:10.1136/jnnp-2013-

306589

42. Lunetta C, Lizio A, Melazzini MG, Maestri E, Sansone VA.

Amyotrophic lateral sclerosis survival score (ALS-SS): a

simple scoring system for early prediction of patient

survival. Amyotroph Lateral Scler Frontotemporal

Degener. 2015;17(1–2):93-100. doi:10.3109/21678421.2015.
1083585

43. Van Houwelingen HC, Putter H. Dynamic Prediction in

Clinical Survival Analysis. CRC Press; 2012.

44. Wu C, Li L, Li R. Dynamic prediction of competing risk

events using landmark sub-distribution hazard model with

multiple longitudinal biomarkers. Stat Methods Med Res.

2020;29(11):3179-3191. doi:10.1177/0962280220921553

45. Klein JP, van Houwelingen HC, Ibrahim JG, Scheike TH.

Handbook of Survival Analysis, Chapter 21. Landmarking.

Chapman & Hall/CRC Press; 2014:441-456.

46. Rafiq MK, Lee E, Bradburn M, McDermott CJ, Shaw PJ.

Creatine kinase enzyme level correlates positively with

serum creatinine and lean body mass, and is a prognostic

factor for survival in amyotrophic lateral sclerosis. Eur J

Neurol. 2016;23(6):1071-1078. doi:10.1111/ene.12995

47. Zach N, Ennist DL, Taylor AA, et al. Being PRO-ACTive:

what can a clinical trial database reveal about ALS?

Neurotherapeutics. 2015;12(2):417-423. doi:10.1007/

s13311-015-0336-z

Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Table S1. The dynamic Cox model based on Dataset 3.

Table S2. The detailed covariate information for example

patients.

Figure S1. Time-varying effects of covariates for the

dynamic Cox model based on Dataset 3.

Figure S2. Flow chart of data cleaning.

Appendix S1. The process of data cleaning.

ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 903

B. Huang et al. Dynamic Prognostic and Prediction for ALS

https://doi.org/10.1001/jamaneurol.2014.1129
https://doi.org/10.1016/j.ceca.2009.12.002
https://doi.org/10.1016/j.ceca.2009.12.002
https://doi.org/10.1007/s10072-017-3138-8
https://doi.org/10.1007/s10072-017-3138-8
https://doi.org/10.1016/j.jbi.2015.09.021
https://doi.org/10.1016/j.jbi.2015.09.021
https://doi.org/10.3389/fninf.2018.00036
https://doi.org/10.3389/fninf.2018.00036
https://doi.org/10.1038/s41598-022-17805-9
https://doi.org/10.1038/s41598-022-17805-9
https://doi.org/10.3109/21678421.2014.897357
https://doi.org/10.3109/21678421.2014.897357
https://doi.org/10.1136/jnnp-2013-306589
https://doi.org/10.1136/jnnp-2013-306589
https://doi.org/10.3109/21678421.2015.1083585
https://doi.org/10.3109/21678421.2015.1083585
https://doi.org/10.1177/0962280220921553
https://doi.org/10.1111/ene.12995
https://doi.org/10.1007/s13311-015-0336-z
https://doi.org/10.1007/s13311-015-0336-z

	 Abstract
	 Introduction
	 Methods
	 Data source
	 Statistical methods
	 Landmarking approach
	 Dynamic Cox prediction model

	 Model evaluation
	acn351771-fig-0001

	 Results
	 Description of predictors
	 Predictor selection
	 ALS dynamic prognostic and prediction model
	 Dynamic prognostic analysis
	acn351771-fig-0002
	 Predictive performance assessment
	 Individual survival prediction
	acn351771-fig-0003

	 Discussion
	acn351771-fig-0004

	 Conclusions
	 Author Contributions
	 Acknowledgments
	 Conflict of Interest
	 Data Availability Statement

	 References
	acn351771-bib-0001
	acn351771-bib-0002
	acn351771-bib-0003
	acn351771-bib-0004
	acn351771-bib-0005
	acn351771-bib-0006
	acn351771-bib-0007
	acn351771-bib-0008
	acn351771-bib-0009
	acn351771-bib-0010
	acn351771-bib-0011
	acn351771-bib-0012
	acn351771-bib-0013
	acn351771-bib-0014
	acn351771-bib-0015
	acn351771-bib-0016
	acn351771-bib-0017
	acn351771-bib-0018
	acn351771-bib-0019
	acn351771-bib-0020
	acn351771-bib-0021
	acn351771-bib-0022
	acn351771-bib-0023
	acn351771-bib-0024
	acn351771-bib-0025
	acn351771-bib-0026
	acn351771-bib-0027
	acn351771-bib-0028
	acn351771-bib-0029
	acn351771-bib-0030
	acn351771-bib-0031
	acn351771-bib-0032
	acn351771-bib-0033
	acn351771-bib-0034
	acn351771-bib-0035
	acn351771-bib-0036
	acn351771-bib-0037
	acn351771-bib-0038
	acn351771-bib-0039
	acn351771-bib-0040
	acn351771-bib-0041
	acn351771-bib-0042
	acn351771-bib-0043
	acn351771-bib-0044
	acn351771-bib-0045
	acn351771-bib-0046
	acn351771-bib-0047


